Highly efficient and robust molecular ruthenium catalysts for water oxidation.

نویسندگان

  • Lele Duan
  • Carlos Moyses Araujo
  • Mårten S G Ahlquist
  • Licheng Sun
چکیده

Water oxidation catalysts are essential components of light-driven water splitting systems, which could convert water to H(2) driven by solar radiation (H(2)O + hν → 1/2O(2) + H(2)). The oxidation of water (H(2)O → 1/2O(2) + 2H(+) + 2e(-)) provides protons and electrons for the production of dihydrogen (2H(+) + 2e(-) → H(2)), a clean-burning and high-capacity energy carrier. One of the obstacles now is the lack of effective and robust water oxidation catalysts. Aiming at developing robust molecular Ru-bda (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts, we carried out density functional theory studies, correlated the robustness of catalysts against hydration with the highest occupied molecular orbital levels of a set of ligands, and successfully directed the synthesis of robust Ru-bda water oxidation catalysts. A series of mononuclear ruthenium complexes [Ru(bda)L(2)] (L = pyridazine, pyrimidine, and phthalazine) were subsequently synthesized and shown to effectively catalyze Ce(IV)-driven [Ce(IV) = Ce(NH(4))(2)(NO(3))(6)] water oxidation with high oxygen production rates up to 286 s(-1) and high turnover numbers up to 55,400.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly efficient and robust molecular water oxidation catalysts based on ruthenium complexes.

Two monomeric ruthenium molecular catalysts for water oxidation have been prepared, and both of them show high activities in pH 1.0 aqueous solutions, with an initial rate of over 1000 turnover s(-1) by complex 1, and a turnover number of more than 100,000 by complex 2.

متن کامل

Efficient photochemical water oxidation by a dinuclear molecular ruthenium complex.

Herein is described the preparation of a dinuclear molecular Ru catalyst for H2O oxidation. The prepared catalyst mediates the photochemical oxidation of H2O with an efficiency comparable to state-of-the-art catalysts.

متن کامل

Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode.

A simple strategy to immobilize highly efficient ruthenium based molecular water-oxidation catalysts on the basal-plane pyrolytic graphite electrode (BPG) by polymerization has been demonstrated. The electrode 1@BPG has obtained a high initial turnover frequency (TOF) of 10.47 s(-1) at ∼700 mV overpotential, and a high turnover number (TON) up to 31600 in 1 h electrolysis.

متن کامل

Tunable single-site ruthenium catalysts for efficient water oxidation.

The catalytic water oxidation activity of mononuclear ruthenium complexes comprising a pyridine-functionalized abnormal triazolylidene ligand can be adjusted by modification of the triazolylidene substituents, which is readily achieved through click-type cycloaddition chemistry, affording some of the most active ruthenium catalysts known thus far for water oxidation (TONs > 400, TOFs close to 7...

متن کامل

Silica supported ruthenium oxide nanoparticulates as efficient catalysts for water oxidation.

Pre-synthesized ruthenium dioxide nanoparticulates (RuO(2) NPs) with low level of aggregation were well dispersed in mesoporous silica SBA-15. As a catalyst for water oxidation, the supported RuO(2) NPs exhibit excellent catalytic activity and recyclability. The initial turnover frequency (TOF) is to date the highest among comparable RuO(2) catalysts.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 39  شماره 

صفحات  -

تاریخ انتشار 2012